The VASCULATURE COMPLEXITY AND CONNECTIVITY gene encodes a plant-specific protein required for embryo provasculature development.
نویسندگان
چکیده
The molecular mechanisms by which vascular tissues acquire their identities are largely unknown. Here, we report on the identification and characterization of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC), a member of a 15-member, plant-specific gene family in Arabidopsis (Arabidopsis thaliana) that encodes proteins of unknown function with four predicted transmembrane domains. Homozygous vcc mutants displayed cotyledon vein networks of reduced complexity and disconnected veins. Similar disconnections or gaps were observed in the provasculature of vcc embryos, indicating that defects in vein connectivity appear early in mutant embryo development. Consistently, the overexpression of VCC leads to an unusually high proportion of cotyledons with high-complexity vein networks. Neither auxin distribution nor the polar localization of the auxin efflux carrier were affected in vcc mutant embryos. Expression of VCC was detected in developing embryos and procambial, cambial, and vascular cells of cotyledons, leaves, roots, hypocotyls, and anthers. To evaluate possible genetic interactions with other genes that control vasculature patterning in embryos, we generated a double mutant for VCC and OCTOPUS (OPS). The vcc ops double mutant embryos showed a complete loss of high-complexity vascular networks in cotyledons and a drastic increase in both provascular and vascular disconnections. In addition, VCC and OPS interact physically, suggesting that VCC and OPS are part of a complex that controls cotyledon vascular complexity.
منابع مشابه
A Survey on Complexity of Integrity Parameter
Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...
متن کاملA simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system.
Clearing techniques have been developed to transparentize mouse brains, thereby preserving 3D structure, but their complexity has limited their use. Here, we show that immunolabeling of axonal tracts followed by optical clearing with solvents (3DISCO) and light-sheet microscopy reveals brain connectivity in mouse embryos and postnatal brains. We show that the Robo3 receptor is selectively expre...
متن کاملUnderstanding neuronal connectivity through the post-transcriptional toolkit.
Post-transcriptional regulatory mechanisms have emerged as a critical component underlying the diversification and spatiotemporal control of the proteome during the establishment of precise neuronal connectivity. These mechanisms have been shown to be important for virtually all stages of assembling a neural network, from neurite guidance, branching, and growth to synapse morphogenesis and func...
متن کاملThe PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans.
Sulfations of sugars, such as heparan sulfates (HS), or tyrosines require the universal sulfate donor 3'-phospho-adenosine-5'-phosphosulfate (PAPS) to be transported from the cytosol into the Golgi. Metazoan genomes encode two putative PAPS transporters (PAPST1 and PAPST2), which have been shown in vitro to preferentially transport PAPS across membranes. We have identified the C. elegans orthol...
متن کاملProtein Connectivity and Protein Complexity Promotes Human Gene Duplicability in a Mutually Exclusive Manner
It has previously been reported that protein complexity (i.e. number of subunits in a protein complex) is negatively correlated to gene duplicability in yeast as well as in humans. However, unlike in yeast, protein connectivity in a protein-protein interaction network has a positive correlation with gene duplicability in human genes. In the present study, we have analyzed 1732 human and 1269 ye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 166 2 شماره
صفحات -
تاریخ انتشار 2014